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Basaltic volcanoes erupt in several different regimes which have not been explained. 
At Kilauea (Hawaii), eruption can take the form of either fire fountaining, where gas- 
rich jets propel lava clots to great heights in the atmosphere, or quiet effusive outflow 
of vesicular lava. Another regime is commonly observed a t  Stromboli, where large 
gas slugs burst intermittently a t  the vent. In  an attempt to provide a unifying 
framework for these regimes, we investigate phenomena induced by degassing in a 
reservoir which empties into a small conduit. Laboratory experiments are done in a 
cylindrical tank topped by a thin vertical tube. Working liquids are silicone oils and 
glycerol solutions to  investigate a range of viscosity and surface tension. Gas bubbles 
are generated a t  the tank bottom with known bubble diameter and total gas flux. 
The bubbles rise through the tank and accumulate in a foam layer at the roof. 
Depending on the behaviour of this foam layer, three different regimes can be 
distinguished: (i) steady horizontal flow of the foam leading to bubbly flow in the 
conduit; (ii) alternating regimes of foam build-up and collapse leading to thc 
eruption of a single, large gas pocket ; (iii) flow of the foam partially coalesced into 
larger gas pockets leading to intermittent slug flow in the conduit. These regimes 
have natural counterparts in basaltic volcanoes. 

A simple theory is proposcd to explain regimes (i) and (ii). The bubbles in contact 
with the roof deform under the action of buoyancy forces, developing flat contact 
areas whose size increases as a function of foam thickness. Maximum deformation 
corresponds to  a critical thickness h, = 2u/cpp, gR, where u is the coefficient of surface 
tension, p1 the liquid density, g the acceleration due to gravity, R the bubble radius 
and E the gas volume fraction in the foam. The foam thickness is determined by a 
balance between the input of bubbles from below and the output into the conduit, 
and is proportional to (,ul Q/e2 p1 g)i, where pl is the liquid viscosity and Q the gas flux. 
A necessary and sufficient condition for collapse is that it exceeds the critical value 
h,. In a liquid of given physical properties, this occurs when the gas flux exceeds a 
critical value which depends on viscosity, surface tension and bubble size. 
Experimental determinations of the critical gas flux and of the time between two 
events of foam collapse are in agreement with this simple theory. 

1. Introduction 
Our understanding of volcanoes has progressed in recent times thanks to detailed 

and continous monitoring of volcanic activity in several permanent observatories 
throughout the world, and to a large number of geophysical and geochemical 
investigations. The structure of the volcanic edifice, the plumbing system used by 
lava to reach the Earth's surface, and the evolution of lava composition are well 
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documented for several volcanoes. The dynamics of eruptive phenomena has, 
however, received less attention. Part of the reason for this lies in the high 
complexity of volcanic flows, which involve suspended crystals and gas bubbles. The 
main reason is perhaps that i t  is difficult t o  relate eruptive phenomena to specific 
processes occurring at depth, either in the superficial magma chamber or in the 
deeper source of molten material. 

To set the scene for the present paper, we describe three basic eruption regimes 
representative of basaltic volcanoes. At Kilauea volcano (Hawaii), eruption can take 
the form of ‘fire fountaining’, where lava clots are propelled to heights of several 
hundred metres in the atmosphere by a powerful gas-rich jet (Swanson et al. 1979). 
Another possible regime at Kilauea is the effusive one, where vesicular lava oozes out 
of the vent. At Stromboli, eruptive activity often takes the form of intermittent 
explosions due to  the bursting of large gas pockets which are almost as wide as the 
volcanic conduit (Blackburn, Wilson & Sparks 1976; Wilson 1980). There is a t  
present no unifying theory to explain these different regimes. 

We focus on Hawaiian eruptions because we believe they provide a unique 
opportunity to probe into the magma chamber itself. The striking feature of these 
eruptions is continuous ‘fire fountaining’ which lasts for several hours (up to twenty 
in the last Pu’u’Oo eruption of 1983-1986). This magnificent type of activity 
represents only a small fraction of the whole eruptive sequence. Consider for example 
the 1969-1971 Mauna Ulu eruption (Swanson et al. 1979). During the first six 
months, twelve episodes of fire fountaining were interspersed with long episodes of 
quiet effusive activity lasting several weeks. For the next eighteen months, the 
eruption continued without fire fountaining, in an effusive regime which slowly 
waned. This reveals two important features: first, cyclic changes of activity in the 
first part of the eruption, secondly, the disappearance of fire fountaining in the 
second part. These samc features have been recorded for other Hawaiian eruptions 
and are thus truly representative. 

It is instructive to compare the duration of each phase in the cyclic regime with 
the rise-time from chamber to vent. At Kilauea, the top of the main magma chamber 
is at a depth of 2-3 km (Thurber 1987 ; Ryan 1987). Eruptions occur either a t  the 
summit of the volcano, or many kilometres away on its east flank, about 10 km in 
the Mauna-Ulu case discussed here. The horizontal extent of the chamber is not 
known accurately and it is not clear how far it extends in the direction of the flank 
eruptive vents. Thus, the distance from the chamber to the vent is only constrained 
to be between about 3 and 10 km. During fire fountaining, lava clots and gas are 
erupted a t  velocities of several hundred metres per second (Wilson & Head 1981). 
These high velocities are due to gas exsolution and expansion as pressure is released 
during ascent in the conduit. Taking into account the pressure effect leads to .a 
representative value of 1 m/s for velocities at depth, regardless of the exact flow 
regime (Wilson & Head 1981 ; Vergniolle & Jaupart 1986). Thus, an upper bound for 
the rise-time from chamber to  vent is 3 h, which is less than 10 h, the typical duration 
of a fountaining episode. Because the characteristics of fire fountaining remain quasi- 
steady throughout an episode, this implies that  conditions at the conduit entrance, 
i.e. a t  the chamber roof, are also steady during this length of time. The same 
conclusion holds for effusive activity. Flow velocities are around lop2 m/s (Vergniolle 
& Jaupart 1986) and the rise-time cannot exceed 12 days, which is again significantly 
lower than the episode duration (typically a month). We conclude that both regimes 
are close to steady-state and hence that they correspond to different conditions in the 
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reservoir which feeds the conduit. Cyclic activity thus reflects cyclic changes in the 
magma chamber. 

The quantity of volatile species which can be dissolved in silicate magmas 
increases with increasing confining prcssurc. All magmas generated in the earth 
contain sufficient volatiles such that, during decompression on their ascent to  the 
surface, exsolution of gas bubbles occurs. A central issue is whether or not bubbles 
are present in shallow magma chambers beneath volcanoes or whether they first 
appear during the final ascent through the eruption conduit. Available physical 
models (e.g. Wilson & Head 1981) deal with the evolution of a homogeneous mixture 
of magma and gas as i t  rises in the eruption conduit and undergoes pressure release. 
In steady-state conditions, these models are able to predict the eruption 
characteristics as a function of mass flux and lava volatile content. However, they 
rely on simplifying assumptions on the pressure evolution and the interaction 
between the liquid and gas phases (Vergniolle & Jaupart 1986). As a consequence, 
they are weakly sensitive to conditions in the chamber that feeds the eruption. When 
the eruption characteristics vary, these models are used to infer that the gas content 
of lava changes (Head & Wilson 1987), but the cause of these changes is not 
explained. Our aim is to propose a model based on separated flow of gas and liquid 
in the magma chamber and conduit system. This model links observed eruptive 
characteristics, including intermittent changes of regime, to processes occurring in 
the magma chamber and/or specific locations in the plumbing system of the volcano. 

Several pieces of evidence provide a clue as to the mechanism which is a t  work. At 
Stromboli, detailed measurement of exit velocities show that the volume ratio of gas 
to lava is very large, typically about lo5 (Chouet, Hamisevicz & McGetchin 1974). 
Such extreme values cannot be explained by gas exsolution and expansion during 
ascent in the conduit, and thus imply that volatile concentration is occurring at 
depth. At Etna, the compositions of gases and lava in radioisotopes with short half- 
lives imply that lava remains in contact with a gas phase for several days before 
being erupted (Lambert et al. 1985; LeCloarec et al. 1988). These studies indicate that 
magma and gas phases coexist in a deep reservoir throughout an eruption. A similar 
conclusion is reached for Kilauea on the basis of the carbon-sulphur systematics of 
erupted gases (Greenland 1987). One reason why gas exsolution can begin in the 
magma chamber is because the melt is stored there; it loses heat to the surrounding 
solid rocks which in turn causes crystallization. Volatile species are essentially 
incompatible in the mineral phases and hence fractional crystallization concentrates 
volatiles in the melt until the saturation point is reached (Tait, Jaupart & Vergniolle 
1989). 

Motivated by the evidence that a gas phase is present in the magma chamber, we 
have studied in the laboratory the dynamical phenomena induced by degassing in a 
reservoir which empties into a narrow conduit (Jaupart & Vergniolle , 1988). 
Specifically, degassing takes the form of gas bubbles, which rise through liquid and 
are trapped at  the reservoir roof, where they accumulate in a foam layer. This foam 
collapses periodically into gas pockets which erupt into the conduit. The purpose of 
the present study is to present a complete set of experimental results, including 
measurements of intermittency and erupted gas volumes, together with a simple 
theory to account for them. The limitations and implications of the model are 
discussed in the last section. 
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2. The experiments 
2.1. Experimental set-up and working jluids 

Our apparatus is described in figure 1 .  A cylindrical tank of 14 cm inner radius is 
topped by a conduit of 2.2 cm inner radius. Gas bubbles are generated at the bottom 
through a set of 185 capillary tubes connected to a pressurized nitrogen bottle. The 
gas flux is monitored. The capillary tubes all have the same width and length, 
ensuring that the viscous head loss is constant and hence that the emitted bubbles 
have the same size. To verify that the phenomena observed were not an artefact of 
the apparatus, we also used a larger conduit (5 cm radius) and a smaller number (45) 
of capillary tubes. 

to 5 Pa s (table 1). To 
investigate the role of surface tension, we also used glycerol solutions of various 
concentrations. These have the same viscosity values as some of the silicone oils but 
have surface tension coefficients which are higher by a factor of 3. 

Depending on the gas flux, there are two regimes for bubble generation out of 
capillary tubes (Clift, Grace & Weber 1978, pp. 324-327). At low gas flux, the bubble 
diameter is determined by the balance between buoyancy and surface tension around 

We use silicone oils with viscosities ranging from 

the orifice perimeter : 

d = (%y, 
where do is the orifice diameter, u the surface tension coefficient, p1 the liquid density, 
and g the acceleration due to gravity. At higher gas flux, the bubble diameter is 
determined by a balance between buoyancy and drag by flow. Denoting the gas flux 
by Q and the number of capillary tubes by n, the gas flux for each orifice is &In and 
the bubble diameter is given approximately by : 

where p, is the liquid viscosity. We have verified the validity of these formulae by 
using photographs taken from the top of the open tank. The bubble diameters are 
given in table 2 as a function of working fluid and gas flux for the set of 185 capillary 
tubes. 

2.2. The different regimes observed 
The experiments have been described earlier (Jaupart & Vergniolle 1988), and we 
briefly recall the salient results. As the gas flux is increased, the bubbles rise in 
increasingly complex patterns, eventually forming bubble plumes. The patterns also 
depend on liquid viscosity. They are due neither to the roof and conduit geometry, 
as shown by experiments with the tank open, nor to the capillary tube arrangement, 
as shown by experiments in water where each bubble rises perfectly vertically. For 
our present purposes, these phenomena play no important role and it may be 
assumed that there is a uniform supply of bubbles at the tank roof. 

For any given liquid, the experiment can be characterized by the dynamic 
phenomena which occur but, more importantly, by the level of liquid in the conduit. 
As gas is fed into the tank, liquid rises in the conduit to compensate for the gas 
volume contained in the tank. This gas volume is the sum of two contributions, one 
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FIGURE 1. Experimental set-up to study the phenomena induced by degassing in a reservoir. Gas 
is injected through a set of 185 capillary tubes a t  the bottom of the tank. The gas flux is monitored 
through a fluxmeter. 

Silicone oils 
(Rhodorsil) 
47V10 
47V50 
47V 100 
47v500 
47V1000 
47V5000 

Glycerols 
85 % 
07 Yo 
99 Yo 

Density 
P, (kg m-3) 

930 
950 
965 
970 
970 
973 

1228 
1237 
1262 

Viscosity (at  21 "C) 
IU,(Pa s) 

9.3 x 10-3 
4.8 x lo-' 
9.7 x 10-2 
4.9 x 10-1 
9.7 x 10-l 
4.9 

1.5 x 10-1 
2.0 x lo-' 
1.2 

Surface tension 
u(kg s - ~ )  

2.0 x 10-2 
2.1 x 10-2 
2.1 x 10-2 
2.1 x 10-2 
2.1 x 10-2 
2.1 x 1 0 - 2  

6.4 x 
6.4 x 
6.3 x 

TABLE 1. Physical properties of the working liquids 

from the bubbles rising in the tank and the other from the foam layer a t  the roof 
(figure 2). For a given gas flux, the former is constant and hence the 'activity ' can 
be monitored by watching the variations of liquid level in the conduit. This simple 
observation has also been made on true volcanoes. We have characterized three 
different regimes. For the sake of simplicity, we describe them using the silicone oils 
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Silicone oils 
47V10 
47V50 
47V100 
47V500 
47V 1000 
47V5000 

Glycerols 
85 % 
89 Yo 
99 Yo 

Gas flux 
(cm3/min) 200 2000 

1.7 1.7 
1.7 2.3 
1.7 2.7 
2.3 4.0 
2.7 4.8 
4.0 7.6 

2.3 2.8 
2.3 3.0 
2.7 4.7 

TABLE 2. Bubble diameters (in mrn) 

Conduit 

0 

0 

0 0  0 O I  0 
0 0 0 0 0  

0 0  
0 0  0 

O O  
0 0  0 

0 

0 -  
v, 

0 O " 0  I I10 

Foam 

Tank 

FIGURE 2. The liquid level in the conduit rises because of the gas contained in the system. This has 
two contributions : bubbles rising in the tank and bubbles included in the foam a t  the tank roof. 
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a t  a given gas flux of 1000 cm3/min, as a function of liquid viscosity only. The role 
of the other parameters will be discussed later. 

For the silicone oil with lowest viscosity (lo-’ Pa  s), the system reaches a steady 
state in which the foam flows horizontally along the tank roof and escapes into the 
conduit. The level of liquid in the conduit stays constant, which shows that the foam 
volume also stays constant. 

For a viscosity five times higher (0.05 Pa s), the foam goes through a cycle of 
accumulation and collapse, reflected in large variations of liquid level in the conduit. 
As new gas bubbles reach the tank roof, the foam thickness increases and liquid rises 
in the conduit. When the foam reaches a certain thickness, it collapses suddenly into 
a single gas pocket which erupts (figure 3). As the volume of gas trapped in the foam 
is lost, the liquid level drops in the conduit. 

For liquid viscosity exceeding 0.5 Pa s, the foam collapses only partially and 
generates a series of gas slugs which erupt intermittently (figure 4). The level of liquid 
in the conduit exhibits small fluctuations associated with the bursting of these slugs. 

The experiments thus show three different regimes: (i) steady foam flow, (ii) 
alternating regimes of foam build-up and collapse leading to the violent eruption of 
a large gas pocket and (iii) partial foam collapse leading to  intermittent slug flow. 
These regimes represent different states for the foam layer and define convenient 
limit-cases. The first regime is such that there is a permanent foam layer made of the 
bubbles fed through the tank bottom. In the second regime, there is no permanent 
foam layer and the system alternates between a state of foam build-up and one of 
foam disappearance. In the third regime, there is again a permanent foam layer a t  
the tank roof, but it is made of gas pockets which are larger than the bubbles from 
the tank interior. 

These regimes also depends on the gas flux and the coefficient of surface tension. 
To illustrate this, we have recorded the height of the liquid column in the conduit as 
a function of the gas flux. For each gas flux, we made a series of a t  least thirty such 
determinations and calculated the mean and the standard deviation. These data are 
converted to volume values using the conduit cross-section. As shown later, these 
straightforward and simple measurements are sufficient to characterize the processes 
occurring in the system in a quantitative manner. 

Figure 5 (a )  shows the data for the liquid with lowest viscosity ( lop2 Pa s). At any 
given gas flux, the liquid level is constant and hence takes a single value. This level 
rises as the gas flux increases because the volume of foam and the amount of bubbles 
in the tank both increase. The increase of foam volume will be explained in $3. The 
volume occupied by the rising bubbles is equal to the product of the gas flux and the 
rise-time from bottom to top. The bubble diameter is weakly sensitive to the gas flux 
(equations (1  a, b ) ) ,  implying that the rise velocity and hence the rise time depend 
weakly on the gas flux. Thus, increasing the gas flux leads to a larger number of gas 
bubbles in the tank interior. The foam volume is not absolutely constant, due to the 
fact that, as the foam flows against the roof, a few bubbles sometimes coalesce a t  the 
conduit edge and form a gas slug which rises and bursts at the top of the liquid 
column. The relevance of this phenomenon to what has been called ‘gas piston’ 
activity a t  Kilauea volcano has been discussed in Jaupart & Vergniolle (1988). 

Figure 5 ( b )  shows the data for the 0.05 Pa s silicone oil. We have already 
mentioned that, this experiment is characterized by cyclic changes of liquid level due 
to  foam collapse. In fact, it  is only above a certain critical value of the gas flux that 
cyclic activity occurs. At low gas flux, the regime of steady foam flow prevails. 
Consider the minimum and maximum values of the gas volume contained in the tank 
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FICURR 3. The alternating regimes of foam build-up and collapse for 0.1 Pa s silicone oil (the gas 
flux is 1000 cm3/min). The photographs are taken a t  0.5 s intervals. ( a )  The bubbles accumulate a t  
the roof (white region) and liquid rises in the conduit. ( b )  At a critical thickness, the foam collapses 
into a single gas pocket which starts erupting. ( c )  The gas pocket erupts in an annular flow 
configuration, with a central gas jet and liquid films along the conduit walls. ( d )  The gas pocket has 
erupted: note the liquid projections a t  the conduit walls and the drop in liquid level. 
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FIGURE 4. The intermittent slugging regime for 1 Pa s silicone oil. ( a )  Close-up of the tank roof 
showing tha t  the foam is made of coalesced bubbles which erupt as gas slugs. ( b )  (:as slugs rising 
in the conduit. Note t h a t  they are much larger t,han the bubbles in the tank. 

(figure 5b) .  These two values cannot be distinguished at low gas flux, which 
corresponds to the regime of steady foam flow. As the gas flux is increased, the curves 
for the minima and maxima diverge markedly, which marks the transition to the 
cyclic regime. The standard deviation of the measurements is not the same for both 
volumes. That for the maximum is markedly smaller than the other and is accounted 
for solely by the random coalescence events occurring at the conduit edge jus t  
described. This indicates that  there is a well-defined maximum for a stable foam 
volume at the tank roof. In contrast, the minimum gas volume exhibits larger 
fluctuations because the gas pocket does not always erupt in a single piece. At a given 
gas flux, the difference between the two volumes gives the volume of the gas pocket 
which erupts. As shown by figure 5(b ) ,  this volume increases together with the gas 
flux. 

To illustrate the role of surface tension, we compare in figure 5 ( c )  the data for the 
0.01 Pa s silicone oil and an 85?4 glycerol solution which has an almost identical 
viscosity (table 1 ) .  The onset of foam collapse occurs at a much higher gas flux in the 
case of the glycerol solution. 

These data providc the framework for the model developed below. Wr have also 
recorded the time between ‘bursts’. This second data set provides an independent 
check on the theory. 
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3. Theoretical aspects 

relevant observations. 
We proceed by a series of independent considerations which are discussed with the 

600- I I 1 I I 1 I I I l l l l ~ l l l l  
- - 
- - 
- Silicone oil 0.05 Pa s - 

3.1. The $ow of the foam layer at the tank roof 

The foam which accumulates a t  the tank roof flows towards the conduit and we treat 
it as a homogeneous fluid of effective density p m  and viscosity pm. The foam density 
is given by : 

where E is the volume fraction of bubbles within the foam and p, and pg the densities 
of liquid and gas respectively. Because the gas density is much less than that of 
liquid, a useful simplification is : 

P m  = ( ~ - E ) P I + E P ~ ,  P a )  

P m  = (1  P I -  ( 2 b )  
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2 

FIGURE 6. Coordinate system used t o  write down the equations for the flow of foam at the 
tank roof. 

The flow properties of foams are not well known in the general case (Kraynick 1988). 
As discussed in Appendix A, a model appropriate for our experimental conditions is 
that of a Newtonian fluid with viscosity given by: 

/Am = #a1( 1 - €)-t (3) 

This expression shows that foams are significantly more viscous than their parent 
liquid. The foam layers observed in our experiments are always thin, with horizontal 
dimensions far exceeding their height, and we use the lubrication approximation 
(Batchelor 1967, p. 219). They behave like viscous currents which are continuously 
fed from below by the bubbles rising from the tank interior (figure 6). In cylindrical 
coordinates ( r ,  z ) ,  the equations of motion can be reduced to :  

ap 
0 = --+pmg, a2 

Let h(r, t) denote the foam height. Integrating (4a) from depths z and h, we find: 

0 = P(r ,  z ,  t )  -P(r ,  h, t )  +pmg(h-z ) .  (5a) 

Outside the foam, the pressure distribution is hydrostatic in a liquid considered to be 
pure working fluid because the amount of bubbles present is very small (less than 2 % 
in volume). Thus: 

where P,, is the pressure in the bulk liquid a t  depth z = 0 (at the conduit entrance). 
Combining (5a )  and ( 5 b )  yields: 

(5 6 )  pk-7 h, t )  = Go+p,gh, 
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The pressure a t  the top of the foam, which will be of interest in the next section, is 

(8) 
therefore : 

P(r ,  0, t )  = P,,+eplgh. 

Using (7), equation (4b)  yields: 

This equation can be integrated with the following boundary conditions : 

u(r ,  0, t )  = 0, ( l o @ )  

au 
az 
- ( r ,  h, t )  = 0. 

Condition (10a)  states that there is no slip along the roof, for reasons given in 
Appendix A. Condition (10 b )  states that the shear stress vanishes at the bottom of 
the foam, along the interface with the bulk liquid. This is not strictly exact, since the 
flowing foam induces flow in the adjacent liquid, but represents a reasonable 
approximation in a deep tank such as the one used here (see the discussion in Huppert 
1982). Using those, one finds: 

Finally, we use the continuity equation which states that the foam volume contained 
between cylinders of radii ( r )  and (r+dr)  varies according to the horizontal fluxes 
across the sides of the cylinders and the vertical flux due to the bubbles from below. 
If the total gas flux is Q,  then the corresponding flux of foam is Q/e ,  and the vertical 
flux per unit area q is: 

q = -  Q 
€S’ 

where S is the cross-section of the tank. The horizontal foam flux across the side of 
a cylinder of radius r is: 

(13a)  #(r ,  t )  = 2xr 1 u dz. 

The continuity equation is : 

ah a# 2 ~ r  - = 2xrq - - . 
at ar 

Substituting ( 1  1) into (13a) and then into (13 b )  yields the following equation for the 
foam height : 

(14) 

This equation can be made dimensionless using the following scales : 

r = rtr’ ,  (15a)  
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where rt is the tank radius. Throughout the following, dimensionless variables will be 
used and the primes dropped. Boundary conditions can be specified at  the tank 
periphery and the conduit entrance. At the tank pcriphery, there is no influx of 
bubbles into the foam layer, hence : 

$h( l , t )  = 0. (16a)  

At the conduit entrance, we take a ‘wide’ conduit condition, such that the rate of 
upward flow of bubbles is not limited by the conduit size. Hence, there is no 
limitation on the flux out of the foam layer. We assume that flow is such that it thins 
the foam to zero thickness: 

where r ,  is the conduit radius. In  principle, we should solve for thc foam thickness 
a t  the conduit edge. However, the lubrication equations are no longer valid there and 
it has been shown that the simplified boundary condition (16b) does not lead to 
significant differences (Singh & Birkebak 1969; Beckett & Poots 1975). 

Together with the obvious initial condition h(r,  0) = 0, the problem is completely 
specified. We found no analytical solution to (14b) and we integrated it numerically. 
Figure 7 shows the solution at  various times for rc = 0.157. The behaviour of the 
foam layer can be described simply as follows. For small times and away from the 
conduit, the foam thickness is constant and increases linearly with time as h = t 
(figure 8). Close to the conduit, flow into the conduit acts to thin the foam. This effect 
develops with time, affecting increasingly larger portions of the foam, and can be 
seen as a ‘front ’ moving radially outwards. The behaviour can be understood bettcr 
by a similarity solution dcvcloped for the two-dimensional equivalent of (14b) in 
Appendix B. 

For large times, the foam adopts a steady-state geometry, whereby flow into the 
conduit balances exactly the input of bubbles from below. The steady-statc equation 
for the foam thickness is: 

Tz(rh3%) dh = - 1 ,  
1 d 

( 1 6 h )  h(rc,  t )  = 0, 

(17) 

which, together with boundary conditions (16a,  b )  yields : 

h,(r) = {Z In ( r )  - r2  - 2 In ( r ,  ) + rE>’. (18) 

This describes the steady foam flow found with the silicone oil of lowest viscosity 
( Pa s). 

An important feature of the solution in figure 7 is that, for any given gas flux, the 
foam thickness never exceeds a maximum value which is its steady-state value at  the 
tank periphery : 

h, = {-21n(rc)+r:-1}+. 

The other important feature of this solution is given by the scaling relationship in 
(15b) ,  i.e. the foam thickness increases with both the gas flux Q and the liquid 
viscosity pl. 

This solution describes the experiments when there is no coalescence. To 
understand the process of coalescence, we turn to the internal structure of the foam 
and ask whether i t  is dynamically stable. 

(19) 

3.2. The behaviour of bubbles within the foam layer 

The essential phenomenon is the deformation of bubbles by buoyancy forces as they 
tend towards close packing conditions in the foam layer. Consider first the well- 
known case of an isolated bubble stuck against the horizontal tank roof (e.g. Lee & 
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FIQURE 8. Foam thickness at the tank periphery h(1, t )  as a function of time in non-dimensional 
variables. Note that, for small times, the thickness increases as t .  

Hodgson 1968) : buoyancy acts to flatten it and leads to an approximately flat and 
circular contact area of radius b (figure 9). Equilibrium of the bubble is achieved 
through a balance between its buoyancy and excess pressure AP in the liquid film 
above i t  (the pressure exerted by the roof) : 

(20a) m 1 -  P g  ) 9 = A h b 2 >  
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1 

FICIJRE 9. Schematic representation of a single bubble flattening against a rigid horizontal surface 
under its own buoyancy. b is the radius of the circular contact area and r the radius of curvature 
of the bubble walls just below this contact area. The finite contact angle 6’ is only a convenient 
geometrical simplification. The liquid film above the bubble is thick enough so that  molecular 
effects are negligible and hence there is no ‘dispersive pressure’ in the filni (e.g. Princen 1979). 
Thus, in reality. there is no discontinuity in the curvature of the bubble walls. 

where V is the bubble volume. Across the flat film, pressurc is continuous, and gas 
inside the bubble is also with excess pressure A€’. Just  below the edges of the flat film, 
this excess pressure is balanced by surface tension of the curves gaslliquid interface 
and hence: 

(20b)  
2u 

hp=- 
r 

where u is the coefficient of surface tension and r the radius of curvature of the bubble 
close to the flat contact area (see figure 9). In this problem, pressure variations are 
small and we neglect the compressibility of the gas phase. Thus, T’ is equal to the 
original bubble volume of $nR3. If bubblc deformation is not largz, i.e. if buoyancy 
is not large, r is close to the original radius R and we obtain the following expression 
for b :  

The important fact is that b decreases with increasing u, which reflects the role of 
surface tension in resisting deformation. 

In  our experiments, the bubbles are in a foam and hence take more complex 
shapes. We again focus on the bubbles a t  the tank roof, which must support the 
buoyancy of the whole foam. Consider first moderate packing conditions cor- 
responding to moderate foam heights (the qualification ‘moderate ’ will be defined 
below). Under those conditions, the contact area is circular by symmetry with radius 
6 .  For a foam volume V, with horizontal area X,, the total buoyancy force F is acting 
on n bubbles a t  t,he roof. Each bubble thus supports a force F l n ,  and the same 
argument as before leads to : 
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Now, each bubble a t  the roof occupies a cross-sectional area S' in the horizontal 
plane, and, by definition, neglecting the small area occupied by the liquid films 
between neighbouring bubbles : 

Using V, = hS, and neglecting the gas density, we 

nS = S,. 

8' h,p,C: = 2na(b2/r), 

which can be rewritten as: 
2a 1/7cb2\ n = - -  - 

&PIS r \ S' I 
If the radius of curvature does not vary much, 

(23) 

(24a)  

(24b) 

find : 

this equation has the simple 
interpretation that, as h increases, the bubble flattens such that the ratio of contact 
area to cross-section increases. Maximum flattening is thus such that this ratio 
reaches the value of 1.  

To proceed further, one needs to specify the geometrical characteristics of packing. 
As shown by several studies, the probable packing configuration is a sphere 
truncated by a rhomboidal dodecahedron (RDH packing, see Princen, Aronson &, 
Moser 1980) (figure 10) .  The radius of curvature, r ,  of the deformed bubble edges, is 
thus equal to the radius of the truncated sphere. Each face is a rhombus located at 
a distance $ from the RDH centre, with long diagonal a and small diagonal a / z /Z .  
A cross-section through the RDH along four long diagonals of length a (figure 11)  

(25)  
yields : cos8 = & / r .  

The volume of the deformed bubble can be calculated as: 

Or, using (25)  : 
V = 3 r 3 (  -5 + 9 cos 8- 3 C O S ~  0). 

If the foam thickness is not large, pressure variations are small and compressibility 
effects are negligible. I fR denotes the original bubble radius, volume conservation for 
each bubble yields : 

(27) 

Numerical calculation shows that the ratio r / R  remains close to 1.  This can be seen 
by the Taylor series expansion of (27) : 

r / R  = ( - 5 +  9 cos8-3 cos3 0)-;. 

r / R  = l+q84+O(88) .  (28) 

Thus the radius of curvature of the bubble edges remains very close to the original 
radius. The packing geometry also yields the cross-section 8' of the deformcd bubble 
(figure 11)  and we find, using (24b): 

Because r remains equal to R for all practical purposes, this equation shows how the 
contact angle a t  the roof increases as a function of the foam thickness. The equation 
is valid only when h is larger than the bubble diameter and hence does not apply for 
very small values of 8. 

The RDH packing configuration is only an approximation. However, other 
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FIGIJRE 10. Geometrical configuration for bubbles in RDH packing. Each bubble is inscribed in a 
rhomboidal dodecahedron and develops flat contact areas with each face. 

a 
f 

a 
> 

FIGURE 11. Two cross-sections through a bubble in RDH packing. (a )  Through the Sour long 
diagonals, i.e. in a plane perpendicular to the contact area. ( b )  Through the median horizontal plane 
of the dodecahedron. 
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configurations would only lead to different coefficients in (27) and ( 2 9 ~ ) .  For 
example, (29a) takes the general form : 

wheref(8) is some increasing function of cont,act angle 8. The RDH geometry cannot 
be used for contact angles greater than 30". This limit-angle is such that the circular 
contact areas become tangent to the edges of the rhombi (figure 10). For larger values 
of the contact angle, there is no generally accepted geometry. The system must tend 
towards a polyhedral foam and some modification of the figure of a regular 
pentagonal dodecahedron is usually considered (Princen et al. 1980). It is not, possible 
to specify simply how packing develops under those conditions. By continuity, we 
assume that thc radius of curvature of the film edges remains close to R,  the original 
bubble radius. The maximum packing condition is such that the cont,act area 
becomes equal to the cross-sectional area of thc bubble (see above). Using (24b), the 
maximum foam height is thus: 

Although this does not const,itute a rigorous proof, we shall provide experimental 
verification for this relationship. 

3.3. The phenomenon of foam collapse 
To summarize the preceding argument, there is a critical thickness above which 
bubble deformation becomes insufficient to balance buoyancy. If the foam is thinner 
than this value, it is stable and steady form flow occurs. If its thickness reaches the 
critical value, it is no longer stable and we assume that this defines the condition for 
collapse. The critical thickness depends neither on the fluid viscosit,y nor on the gas 
flux. As shown by the scaling relationship (156), increasing the foam thickness to the 
critical value can be achieved by increasing either the liquid viscosity or the gas flux. 
This explains our experimental findings. A final verification is provided by the 
experiment with the 85 % glycerol solution. This liquid has almost the same viscosity 
as the 0.1 Pa s silicone oil which exhibits marked foam collapse for gas fluxes above 
100 cm3/min (figure 5c),  yet requires a gas flux in excess of about 1400 cm3/min to 
produce the same effect. This is because surface tension is higher (table l ) ,  which 
implies a higher critical thickness and hence a higher critical gas flux. 

The criterion for foam collapse is thus: 

h, = h,. 

The critical gas flux &, is thus such that the maximum foam thickness a t  that  gas 
flux is equal to h,: 

where A is the constant deduced from (15b) and (19) : 

A =  -21n C +--1 ( (:I :i )t ( 3 2 6 )  
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FIGURE 12. Plot of the critical gas flux for foam collapse as a function of parameter group 
u4/p:p,d4 (equation (336)). The thick line and the two dashed lines correspond to three values 
of the gas volume fraction : the mean value of 0.69 and the two extreme values of 0.61 and 0.76 
respectively. 

Using ( 3 )  for the foam viscosity, we obtain: 

where the bubble diameter d has been used instead of the radius R. If the gas volume 
fraction E is constant, this can be expressed as: 

where B is a coefficient which depends on the value of e. Thus, the critical gas flux 
should be proportional to the parameter group g4 /p:,ul d4. 

The critical gas flux has been determined for our different fluids. This was done 
using the gas volume data and determining the gas flux for which the curves for the 
minimum and maximum gas volumes intersect each other. These estimates are 
plotted against the parameter group defined in (33 b )  in figure 12. The theory predicts 
that the data points should lie on a line of slope 1,  which is indeed approximately 
true. There is some scatter, which we attribute to small changes in the gas volume 
fraction e. As shown by (33a) ,  a small difference in the value of e changes the value 
of the critical gas flux by a large amount : for E increasing from 0.6 to 0.7, say, the 
critical gas flux decreases by a factor of 3. The coeficient of proportionality for the 
best-fitting line drawn through the data points in figure 12 is 1.2 x and yields a 
value of 0.69 for e. The two extreme lines which enclose all data points correspond 
to values of 0.61 and 0.76 for e. These values are not absurd : packing with touching 
spheres is achieved a t  a volume fraction of 0.74 and departures from this value can 
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be expected when the liquid films between neighbouring bubbles have a non- 
negligible thickness. The simple theory thus yields reasonable numerical results, even 
though the equations are extremely sensitive to the value of e. For example, selectring 
a value of 0.5 for e, outside the range of what can be called a foam, the coefficient of 
proportionality in (33b) would be 1.6 x well outside the observed range of 

We emphasize that this range of gas volume fractions is within the range of the 
data by Sibree (1934) on the viscosity of foams. These data were used to establish (3) 
for the foam viscosity (Appendix A), and hence the implied viscosity values are not 
an artefact of this equation. 

0.5 x 10-'-2.7 x lo-'. 

3.4. A limit case: instantaneous foam collapse 
At values of the gas flux above the critical value, foam collapse occurs. This is 
achieved through bubble bursting, which is a poorly understood phenomenon 
(Bikerman 1973). We assume that bursting and foam collapse are instantaneous. The 
critical gas flux is such that the foam reaches just the critical thickness a t  steady- 
state. For a higher gas flux, the foam reaches the critical thickness at a smaller time, 
when it has not yet adopted its steady-st,ate shape. In those conditions, the foam is 
flat away from the conduit (figure 7). When it breaks down, its thickness is equal to 
the critical value over an annulus confined between the tank periphery and some 
intermediate radius, and collapse should affect all this region. This is indeed true, as 
shown by a close-up of the tank roof (figure 13). As the gas flux increases further, 
collapse occurs earlier when the flat portion of the foam is larger. This implies that  
the gas pocket volume increases, and explains the data presented in figure 5 ( b ,  c) .  

The theory is not adequate to make accurate predictions of the gas pocket volume. 
From the mathematical point of view, the foam thickness has a strict maximum at 
the tank periphery ( r  = rt) ,  and is smaller than this everywhere. Thus, the criterion 
h = h, taken strictly leads to  a gas pocket of vanishing volume. In  reality, in analogy 
with nucleation phenomena in undercooled melts, the foam thickness must exceed 
the critical value by some small but unspecified amount. A small variation in the 
criterion for instability leads to variations in the area affected by collapse and hence 
in the gas pocket volume. Given this difficulty, the regularity of the experiments is 
remarkable. The theory does, however, allow an approximate check on the value of 
the erupted volume. Clearly, the maximum volume corresponds to a foam with 
thickness h, everywhere and is therefore given by : 

V, = en(rf-rE) h,. 

This volume can be obtained at high values of the gas flux, when the foam reaches 
the critical thickness before flow into the conduit has time to develop. For the mean 
volume fraction of 0.69 and the bubble diameter appropriate for large values of thc 
gas flux (table 2), the critical thickness is about 5.4mm, which is compatible with 
direct visual observation. Equation (34) implies that the maximum foam volume is 
about 330 cm3 and the corresponding gas volume about 230 cm3. A t  high values of 
the gas flux in excess of about 1600 cm3/min, the erupted volume depends little on 
the gas flux for both the 0.05 and 0.1 Pas silicone oils, taking approximately 
constant values of 200+40 cm3 and 230f40 cm3 respectively (figure 56,  c ) .  These are 
consistent with the previous estimate. 

A better check of the model is provided by measurements of the intermitt,ency, i.e. 
the time between two events of foam collapse. At high gas flux (sufficiently above the 
critical value), the foam reaches the critical thickness in a short time, before being 
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FIGURE 13. Close-up of the tank roof when foam collapse occurs (for 0.1 Pa s silicone oil). Note 
tha t  the bubbles burst and coalesce in a n  annulus close to  the tank periphery. 
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FIQURE 14. Intermittency (i.e. the time between two events of foam collapse) as a function of 
gas flux. The thick line is theoretical relationship (36) for a mean bubble diameter of 2 mm. 

affected by flow into the conduit over a large area. Away from the conduit, its 
thickness grows proportional to  time and to  the flux per unit area q (figure 8). Thus, 
the time t, needed to reach the critical thickness h, is given by: 

qt, = h,. (35) 
Using (12) for q as a function of the overall gas flux Q and (30) for the critical 
thickness. we find : 

The interest of this relationship is that it depends neither on the gas volume fraction 
E which is not determined directly, nor on the foam viscosity which is not known 
accurately. If the bubble diameter d does not vary much, it predicts that the 
intermittency is inversely proportional to the gas flux. The relationship is plotted in 
figure 14 and compared to data for two different silicone oils for a mean bubble 
diameter of 2 mm appropriate for those cases (table 2). The agreement is good. 

3.5. Non-instantaneous foam collapse 
We have so far assumed that the foam collapses instantaneously into a single gas 
pocket when the critical thickness is reached. This provides a good description of the 
experiments made with the silicone oils up to a viscosity of about 0.1 Pa s. For the 
more viscous oils, we observed a different regime in which pockets of intermediate 
size are generated and flow intermittently into the conduit (figure 4). For those 
liquids, the foam does collapse, but the process is sluggish. We observed that bubbles 
burst to form a gas pocket which slowly grows while being transported in the foam. 
The gas pocket erupts when it reaches the conduit edge but, a t  that point, the whole 
foam has not collapsed and there are many similar pockets being carried towards the 
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FIGURE 15. Total gas volume as a function of gas flux for the intermittent slugging regime, shown 
for three silicone oils of increasing viscosity. Note tha t  the volume of the gas pockets decreases as 
viscosity increases. 

conduit. We interpret this as being due to the phenomenon of bubble bursting, which 
is of a probabilistic nature. When the foam reaches the critical thickness, collapse 
starts at a certain number of ‘nucleation ’ sites. In the low viscosity oils, we observed 
that collapse propagates across the foam very rapidly (figure 3) and results in a single 
gas pocket. At higher viscosity, each ‘nucleation ’ site generates an individual pocket 
which grows slowly. Growth becomes slower as liquid viscosity increases, leading to 
smaller gas pockets (figure 15). We have no theory for this regime and develop a 
qualitative argument. 

We focus on the individual bursting phenomenon. Consider two touching bubbles. 
By Laplace’s law, the gas inside each bubble is at pressure above the ambient 

(37 )  
pressure P :  

When they burst, these two bubbles coalesce into a single gas pocket. Assuming 
isothermal conditions, the pressure inside the gas pocket is initially a t  the same 
pressure P,, which is not in equilibrium with surface tension along the now larger 
boundary. Gas must expand to re-establish equilibrium. This promotes the bursting 
of the bubbles which surround the pocket, which thus enlarges by successive 
additions. In a viscous liquid, as the pocket grows larger, its expansion is limited by 
viscous forces along its outer boundary. If the pocket is large compared to the bubble 
size, the lengthscale of the deformation is large and it may be considered that the 

& - P  = 2g /R .  
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Residence in 
Viscous growth foam layer Drainage 

7 g  7, Td 

47V10 0.02 8 7 
47V50 0.11 12 15 
47V100 0.25 14 18 
47v500 2.0 21 28 
47V1000 4.5 25 32 
47V5000 35.0 37 41 

Silicone oils 

Glycerols 
85 % 0.13 15 48 
89 % 0.19 16 51 
99 % 1.8 25 75 

TABLE 3. Characteristic times of various phenomena (in seconds, for a nominal gas flux of 
2000 cm3/min) 

surrounding medium which is being deformed is the foam of effective viscosity ,urn. 
Assuming spherical geomet,ry for simplicity, and neglecting inertial terms, the 
governing equation for the gas pocket is (Rosner & Epstein 1972): 

where Rp is the pocket radius. If the pocket is large compared to the initial bubble 
size, then the capillary pressure term in this equation can be neglected. Because the 
pocket does not need to expand much to promote the bursting of neighbouring 
bubbles, the driving pressure difference stays close to the initial value given by (37). 
Thus : 

R 2u 

RP 
4 p m 4  M R.  (39) 

From this, the viscous timescale for the pocket growth is: 

rg =,umd/u. (40) 
The time available for growth is simply the residence time in the foam, whose 
characteristic value is given by the scaling relationship in (15c )  : 

The ratio T ~ / T ,  gives a rough estimate of the number of coalescence events which 
enlarge the gas pocket as it is transported towards the conduit, and hence allows an 
estimate of the pocket volume which will be erupted. Table 3 compares the two 
characteristic times. The growth time is proportional to ,ul and the residence time to 
p!. The ratio rg /r ,  therefore increases with liquid viscosity. Roughly speaking, in the 
experiment with 0.05 Pa s silicone oil, about one hundred coalescence events are 
possible during flow to  the conduit, whereas less than ten such events are possible for 
5 Pa s oil. This accounts for the regular decrease in erupted volume as a function of 
liquid viscosity (figure 15). 
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4. Discussion 
4.1. Drainage of liquid 

We have treated the foam as having a constant and uniform gas fraction e. In reality, 
bubbles always rise with respect to the liquid and liquid drains o u t  of the foam. 
Therefore the gas volume fraction must vary both in time and space. This process has 
been studied extensively, and depends strongly on the physical properties of liquid 
and gas (Bikerman 1973, pp. 159-183). Drew & Segel (1971) have shown that the 
general scaling law for the drainage time is: 

where k, is some coefficient which depends on the geometry of the liquid regions, the 
gas volume fraction and liquid viscosity. By analogy with permeability laws, this can 
be written as 

where k ,  now depends only on the gas volume fraction and the packing configuration. 
In the limit of high e, this expression can be simplified to:  

A series of experiments a t  volume fractions exceeding 0.98 by Rand & Kraynick 
(1983) shows the validity of this relationship. These authors find that the time 
needed to drain half of the liquid initially present in a foam layer is: 

Thus k2 is independent of E in the high volume fraction limit. In the absence of other 
data, we simply extend this law to smaller volume fractions to obtain a characteristic 

The drainage time is similar to the residence time (table 3). At high gas flux, the 
residence time is not a proper measure of the time available for drainage because the 
foam collapses before reaching its steady-state shape. At 2000 cm3/min, the foam 
exists for less than ten seconds (figure 14), which is a fraction of the drainage time 
and implies that only small amounts of liquid can drain out of it. The important fact 
is that the phenomena observed do not depend on the time available for drainage, 
as shown by the variation of intermitency with gas flux (equation (36) and figure 14). 
We conclude that drainage plays no important role. 

4.2. The physics of coalescence 
The exact process of film rupture is not well known, but must involve van der Waal 
forces between the liquid molecules. These forces become important when the film 
thickness is small, and most work on this problem has focused on how and where a 
film thins the most (e.g. Jones & Wilson 1978). Over a foam layer of large horizontal 
dimensions with many bubbles, there must be a statistical distribution of film 
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geometry and thickness. Hence, we may assume that there are always two bubbles 
with thin films where rupture can occur. This explains the fact that  collapse appears 
to  'nucleate' at some location. Once collapse has started, the limiting factor is not 
some local effect in the film, but viscous stresses a t  the edges of the growing pocket, 
as argued in $3.5. 

The criterion for foam collapse relies on a mechanical stability argument. Foam 
collapse is often attributed to shear, which acts to stretch and thin the liquid films 
between bubbles and eventually leads to their rupture (Princen 1979 ; Princen et al. 
1980). I n  our experiments, the foam layer is flowing horizontally and shear stresses 
are indeed applied to the bubble walls. However, we have shown that collapse occurs 
first a t  the tank periphery (figure 13), where, by definition, there is no shear as shown 
by (16a) and (13b). The region of highest shear, in the vicinity of the conduit edge, 
sees little collapse (figure 13). 

4.3. The interpretation of volcanic regimes 
For application to natural systems, i t  is important to characterize simply the 
different regimes. Two dimensionless numbers can be defined. One is the ratio of the 
two characteristic heights : 

When Nl is less than 1, the foam thickness is smaller than the critical value and 
steady foam flow is observed. When Nl exceeds 1, foam collapse occurs. The eruption 
regime will be either cyclic activity or intermittent slug flow, depending on the value 
of a second dimensionless number, defined as the ratio between the growth time and 
the residence time: 

For very small values of N,, collapse can be considered as instantaneous and cyclic 
activity results. When N ,  becomes of order 10-l) say, only a few coalescence events 
are possible, and the slugging regime prevails. This criterion is somewhat ambiguous. 
However, in practice, the field observations are sufficient to discriminate between the 
two regimes: there can be little doubt that  Hawaiian activity corresponds to the 
cyclic one and Strombolian activity to  the slugging one. 

To fully characterize an eruption, one needs to determine the bubble size in the 
magma chamber, the gas flux (the degassing rate) and finally the size of the chamber 
roof. We now discuss briefly the orders of magnitude likely to obtain for these 
variables in Kilauea volcano. The gas bubbles nucleate and grow in a saturated melt. 
Their minimum diameter is a few micrometres, the critical size of a stable nucleus 
(Sparks 1978). The bubbles grow essentially by diffusion and, during the few weeks 
of an effusive episode, can reach a diameter of about 1 em (Sparks 1978). For the 
surface tension of water vapour in basalt (0.4 kg s - ~ ,  Williams & McBirney 1979), the 
critical foam thickness is therefore between 4 cm and 40 m. The area of the chamber 
roof must be larger than that of summit calderas (collapse features attributed to  
foundering of the chamber), which is about 10 km2. Therefore, rough estimates for 
the gas pocket volume lie between 4 x lo5 and 4 x 10' m3. At the ambient pressure in 
the chamber which must be somewhat higher than 5 x 10' Pa if the top of the 
chamber is a t  a depth of about 2 km, the water density is at least 100 kg m-3, 
and hence the mass of gas contained in the pocket may be between 4 x 10' and 
4 x lo9 kg. During an effusive episode, about 10' m3 of melt of bulk density 
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2700 kg m-3 are produced in three weeks (Swanson et al. 1979). For the 0.5 wt% 
concentration suggested by Greenland (1987), the corresponding mass of water is 
about lo8 kg, which lies within the previous range. This comparison is not meant to 
imply that these two gas contents must be equal, but to show that our model does 
not require a large mass of gas compared to that which is available. The wide range 
of values for the various parameters of interest is disappointing, but we show in a 
companion paper that a detailed analysis of Hawaiian eruptions allows strong 
constraints on them. 

It is clear that the flat roof and simple geometry of our experimental tank may be 
far removed from the true structure of a volcano. This is an obvious difficulty and 
several points must be emphasized in this respect. The essential phenomenon is the 
breakdown of a foam layer when i t  reaches the critical thickness. In any situation, 
the foam thickness is determined by a balance between the input of bubbles from 
below and the output into the conduit. A complex roof geometry (sloping for 
example) affects the details of this balance but there is always a gas flux for which 
the foam thickness exceeds the critical value. The robust result of this paper is the 
equation for the critical foam thickness, which has been verified by two independent 
measurements: the critical gas flux and the intermittency. For any given roof 
geometry, it is possible to solve for the foam thickness as a function of gas flux, and 
hence to determine the condition for foam collapse. The problem is thus to specify 
the true roof geometry, which of course is not feasible. Volcanic eruptions are often 
more complex than the descriptions we have given, and it may be more appropriate 
to define a wide spectrum of regimes, with the ‘Hawaiian’ and ‘Strombolian’ 
definitions representing end-members. For example, Stromboli sometimes produces 
small fire fountains (Williams & McBirney 1979), and the ‘gas piston’ activity of 
Kilauean eruptions could well be called Strombolian. All these manifestations can be 
interpreted as the effect of gas pockets of various sizes and explained by irregularities 
of the chamber roof. If our hypothesis is valid, i t  is clear that  only when the geometry 
is simple can the degassing process take a simple and repetitive form. Kilauea is 
probably close to our experimental conditions because it is a shield volcano with 
gentle slopes: there is room for a large magma chamber with an almost horizontal 
roof (see Ryan 1987). 

We end the paper by a remark on the evolution of eruption conditions a t  Hawaii. 
We have stated that a Hawaiian eruption usually starts by a phase in which fire 
fountaining alternates with effusive activity or quiescence, and ends in the effusive 
regime only, without fire fountaining. The available data show that the output rate 
decreases throughout the eruption, which must be linked to a decrease of the 
degassing rate a t  depth. According to our model, when the degassing rate falls 
below the critical value, the cyclic regime with foam collapse becomes impossible, 
and this explains why fire fountaining stops. 

5. Conclusion 
The three possible regimes of degassing described in this paper reproduce many 

observed eruption characteristics of basaltic volcanoes. Fire fountaining may be due 
to the eruption of a large gas pocket, effusive activity to steady foam flow, and 
Strombolian intermittent explosive activity to  the slugging regime. Thus, we suggest 
that all these volcanic manifestations are different forms of the same fundamental 
process : magma degassing in a large reservoir which empties into a narrow conduit. 

As discussed in the introduction, there is strong evidence that degassing does occur 
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in the magma chamber of several well-known volcanoes. Therefore, unless the 
laboratory experiments violate a key feature of volcanic systems, the fluid dynamical 
phenomena we have documented must occur. The fact that phenomena closely 
resembling them do occur shows that, a t  least, this model of volcanic eruptions is 
self-consistent. I ts  interest lies in its ability to relate phenomena observed at  the 
Earth’s surface to processes occurring a t  depth. 
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Appendix A. The rheological properties of foams 
The rheological properties of foams have been studied extensively because of 

important industrial applications. However, there is no comprehensive theoretical or 
observational framework which allows their direct calculation as a function of liquid 
and gas physical properties, surface tension, and gas volume fraction (Kraynick 
1988). Two cases are reasonably well understood: the dilute and ‘dry’ cases a t  small 
and high gas volume fractions respectively. 

At small gas volume fractions, drop deformation gives rise to an elastic-like 
response (Schowalter 1978, pp. 271-275). Such effects are negligible a t  low shear rates 
and can be safely ignored in our experiments. The shear stress-strain rate relationship 
is unaffected by drop deformation and is linear (Schowalter 1978, p. 274), as in a 
Newtonian fluid, with viscosity given by : 

rum = rud1 + n 4 ,  (A 1 )  

where n is a coefficient. For gas bubbles, n is usually taken to be 1 using the equation 
for dilute emulsions (Taylor 1932) and setting the gas viscosity to zero. However, 
dynamic interfacial phenomena contribute complex effects and, in general, n is 
greater than 1 (Kraynick, 1988, p. 330). The limiting case is when bubbles behave as 
rigid spheres and this corresponds to n = $. 

At large gas volume fractions, bubbles are strongly deformed and separated by 
thin liquid films. Theoretical models are only available for two-dimensional foams 
(Khan & Armstrong 1986; Kraynick & Hansen 1987; Schwartz & Princen 1987). 
The latter one is the most realistic because it includes the effects of Plateau borders, 
which are the liquid regions lying a t  the intersection of three films. It predicts that 
foams are shear-thinning, with an effective viscosity which exceeds that of the liquid 
by a large amount, in agreement with experimental evidence. Thcse foams also 
exhibit a yield stress, below which there is no flow, and the phenomenon of ‘slip a t  
the wall ’, where the thin liquid film which wets the bounding walls lubricates the flow 
(Princen 1985; Kraynick 1988). 

We now discuss these important features of foam rheology in the context of our 
experiments. The foam layer which forms at the top of our tank has an intermediate 
gas volume fraction and is such that liquid continuously drains out as the bubbles are 
transported horizontally. The transition from quasi-Newtonian behaviour, which is 
a good approximation in the dilute case, to non-Newtonian behaviour must occur 
when the stretching of thin liquid films becomes an important phenomenon. This 
occurs a t  a gas volume fraction in excess of 0.74, the value for touching undeformed 
spheres where there are no such thin liquid films. For gas volume fractions less than 
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0.01 0.1 1 
Gas volume fraction 

FIGURE 16. Dimensionless foam viscosity ,u.,/y, as a function of gas volume fraction. The line 
corresponds t o  equation (A 5 )  and the dots are the original data from Gibree (1934). 

this, we are aware of only one set of experiments by Sibree (1934). This author has 
often been quoted as saying that his foams exhibited shear-thinning behaviour. 
However, there is no such statcment in his paper. This discrepancy can be attributed 
to the fact that he used a shear-thinning colloid as the continuous phase. In the shear 
rate domain where the viscosity of the continuous phase is constant, he found that 
the foams also have a constant viscosity. He interpreted his data in terms of the 
following relationship : 

&I= 1 
1-(1.3€)f'  

This relationship was an extension of an earlier one and allowed a reasonable fit to 
the data. It predicts that the foam viscosity becomes infinite at the finite volume 
fraction of 0.77. Foams are commonly prepared at much higher volume fractions and 
hence this equation is not adequate. It is simpler to look for a critical law of the form : 

rUm= 1 

P1 

where cc is the critical volume fraction above which the foam breaks down, and n 
a critical exponent. There are foams with e values in excess of 0.98 and a reasonable 
approximation is therefore 6 ,  x 1. As e goes to, zero, (1.3) has the limiting form : 

P m  - = l + n e ,  
PI 

which can be compared to the expression for dilute foams (A 1). Depending on the 
behaviour of bubbles, the coefficient n can take values between 1 and $. Figure (16) 
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shows the data of Sibree (1934) plotted against the equation obtained with the latter 
value : 

(A 5) 

The fit is excellent and hence we adopt (A 5 )  in our analysis. Interestingly, 
viscometric measurements using foams with gas contents between 0.88 and 0.99 show 
that, at low shear rates, shear stress is proportional to strain rate (Thondavadi & 
Lemlich 1985), with an effective viscosity similar to values predicted by this 
equation. 

Yield stress is a strong function of liquid content and essentially drops to zero 
when the gas volume fraction decreases to a value of about 0.7 (Princen 1985). 
Furthermore, it is proportional to u/R, whose value is very small in our experiments 
characterized by quite low surface tension and large bubbles (compared to most 
emulsions). We conclude that yield stress effects can be ignored in our case, or rather 
that they are not an adequate way to represent the behaviour of a loosely packed 
foam which is only a few bubbles in thickness. 

Wall slip can be excluded on the same grounds. It is an important notion only a t  
high gas volume fractions when there is a marked contrast between a foam with thin 
liquid films of small size and a continuous film of bulk liquid along the wall. Further, 
wall slip is found to decrease with shear stress (Princen 1985) and shear stresses are 
small in our experiments. 

Appendix B. Similarity solution for two-dimensional foam flow 
Consider now the two-dimensional case, in which a large rectangular tank is 

topped by a narrow slit through which liquid and foam can escape. This case is 
relevant to fissure eruptions on the flank of basaltic shield volcanoes. The two- 
dimensional equivalent of (14) is : 

where h(x,  t )  is the foam thickness as a function of x ,  the distance away from the slit. 
The boundary and initial conditions are : 

h(0, t )  = 0, 

lim h(x, t )  finite, 
X * C C  

h(x,O) = 0. 

Equation (2.1) with conditions (2.2) has a similarity solution : 

where 7 is a similarity variable defined as follows: 

The equation for H ( 7 )  is: 
d 

~ - 2 7 f i + - ( ( ~ 3 B )  = 1 ,  
d7 
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FIGURE 17. Similarity solution for a two-dimensional tank of infinite extent (from equation (B 
4). The foam thickness is constant for values of 71 larger than about 1.5. 

10-2 10-1 

Time 

1 00 

FIGURE 18. Plot of r l - r c  (see equation (B 7 )  as a function of time for the cylindrical case studied 
in $3.3 (equation (14)) : dots indicate results from the numerical integration of the equation and the 
line shows the similarity dependence r ( t )  oc t z  predicted by the analysis of Appendix R. 
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with the boundary conditions : 
H ( 0 )  = 0, 

lim H ( 7 )  finite. 
7 + m  

We found no analytical solution to (2.4) and have integrated the equation numerically 
(figure 17). The feature of this solution is that for 7 larger than about 1.5, the foam 
thickness is constant. I n  dimensional variables, this shows that, far from the conduit, 
the foam grows linearly with time because it is not affected by flow into the conduit. 
Flow into the conduit affects the foam for values of 7 between 0 and 1.5. In 
dimensional variables, this effect propagates as a ‘ front ’ located a t  x, such that : 

In practice, the tank is of finite dimensions and this solution breaks down when the 
front reaches the tank edge. 

I n  cylindrical coordinates, the boundary conditions are not compatible wit,h such 
a similarity solution. It is not possible to specify both a finite foam height and a finite 
flux of foam with zero radius. The full numerical solution to (14) with finite conduit 
dimensions still exhibits the similarity behaviour at small times. Let r1 be such that : 

h(rl, t )  = (0.97)qt, (B 7) 

( r l  - r c )  varies approximately as t2  for small times (figure 18), which is the functional 
dependence predicted by (B 6).  
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